25995 measured reflections

 $R_{\rm int} = 0.038$

3106 independent reflections

2225 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-1-(2,5-Dimethyl-3-thienyl)-3-(2,4,5trimethoxyphenyl)prop-2-en-1-one

Abdullah M. Asiri,^{a,b} Salman A. Khan^b and M. Nawaz Tahir^c*

^aThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, leddah 21589, PO Box 80203, Saudi Arabia, ^bDepartment of Chemistry, Faculty of Science, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and ^cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 12 July 2010; accepted 18 July 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.113; data-to-parameter ratio = 14.6.

In the title compound, $C_{18}H_{20}O_4S$, the thiophene and benzene rings are oriented at a dihedral angle of 10.83 (11)°. The central chain makes dihedral angles of 1.86 (13) and 9.25 $(12)^{\circ}$ with the benzene and thiophene rings, respectively. In the crystal, molecules are linked through weak intermolecular C-H···O interactions. $\pi - \pi$ interactions are also observed between the benzene rings with a centroid-centroid distance of 3.6832 (12) Å. The slippage between the benzene rings is 0.956 Å.

Related literature

For the biological activity of 1,3-diphenyl-2-propene-1-ones, see: Gökhan-Kelekçi et al. (2007); Ducki et al. (2009); dos Santos et al. (2008); Hussain et al. (2009); Dandia et al. (2006); Valla et al. (2006); Ye et al. (2004). For related structures, see: Asiri et al. (2009): Hussain et al. (2010): Fun et al. (2010).

Experimental

Crystal data

C18H20O4S $M_r = 332.40$ Tetragonal, $I4_1/a$ a = 19.5263 (5) Å c = 17.9952 (4) Å V = 6861.2 (3) Å³ Z = 16Mo $K\alpha$ radiation $\mu = 0.21 \text{ mm}^{-1}$ T = 296 K $0.26 \times 0.18 \times 0.16 \; \text{mm}$

Data collection

Bruker KAPPA APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.966, T_{\max} = 0.975$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	213 parameters
$wR(F^2) = 0.113$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
3106 reflections	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$	
$C9-H9C\cdots O3^{i}$	0.96	2.55	3.209 (3)	126	
C14-H14···O4 ⁱⁱ	0.93	2.57	3.483 (3)	168	

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors would like to thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia for providing research facilities and the Deanship of Scientific Research for the financial support of this work via grant No. (3-045/430).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2278).

References

- Asiri, A. M., Khan, S. A. & Ng, S. W. (2009). Acta Cryst. E65, o1726.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Dandia, A., Singh, R. & Khaturia, S. (2006). Bioorg. Med. Chem. 14, 1303-1308
- Ducki, S., Rennison, D., Woo, M., Kendall, A., Chabert, J. F. D., McGown, A. T. & Lawrence, N. J. (2009). Bioorg. Med. Chem. 17, 7698-7710.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fun, H.-K., Hemamalini, M., Asiri, A. M. & Khan, S. A. (2010). Acta Cryst. E66, o1656-o1657.
- Gökhan-Kelekçi, N., Yabanoglu, S., Küpeli, E., Salgin, U., Özgen, Ö., Uçar, G., Yesilada, E., Kendi, E., Yesilada, A. & Bilgin, A. A. (2007). Bioorg. Med. Chem. 15, 5775-5786.
- Hussain, T., Siddiqui, H. L., Zia-ur-Rehman, M., Yasinzai, M. M. & Parvez, M. (2009). Eur. J. Med. Chem. 44, 4654-4660.
- Hussain, A., Tahir, M. N., Tariq, M. I., Ahmad, S. & Asiri, A. M. (2010). Acta Cryst. E66, o1953.
- Santos, L. dos, Lima, L. A., Cechinel-Filho, V., Corréa, R., Buzzi, F. C. & Nunes, R. J. (2008). Bioorg. Med. Chem. 16, 8526-8534.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Valla, A., Valla, B., Cartier, D., Guillou, R. L., Labia, R., Florent, L., Charneau, S., Schrevel, J. & Potier, P. (2006). Eur. J. Med. Chem. 41, 142-146.
- Ye, C., Liu, J., Wei, D., Lu, Y. & Qian, F. (2004). Pharmacol. Res. 50, 505-510.

Acta Cryst. (2010). E66, o2099 [doi:10.1107/S1600536810028709]

(E)-1-(2,5-Dimethyl-3-thienyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one

A. M. Asiri, S. A. Khan and M. N. Tahir

Comment

1,3-Diphenyl-2-propene-1-one, are considered to be precursors of flavonoids when found as naturally occurring compounds, but it could be considered that their true importance is extended in two branches: The biological activity associated with them, including anti-inflammatory (Gökhan-Kelekçi *et al.*, 2007), antimitotic (Ducki, *et al.*, 2009), anti-leishmanial (dos Santos, *et al.*, 2008), anti-invasive (Hussain, *et al.*, 2009), anti-fungal (Dandia *et al.*, 2006) antimalarial (Valla *et al.*, 2006) and anti-tumor (Ye *et al.*, 2004) properties; as well as their recognized synthetic utility in the preparation of pharmacologically interesting heterocyclic systems. On the bases of these aspects in this paper we are reporting the synthesis and crystal structure of the title compound (I), (Fig. 1).

The crystal structures of (II) *i.e.*, (2E,2'E)-1,1'-bis(2,5-dimethyl-3-thienyl)-3,3'-(p-phenylene) diprop-2-en-1-one (Asiri *et al.*, 2009) has been published which contain the 2,5-dimethylthiophen-3-yl moiety. Similarly, the crystal structures of (III) 2,3-dimethyl-N-[(E)-2,4,5-trimethoxybenzylidene]aniline (Hussain *et al.*, 2010) and (IV) 4-[(E)-(2,4,5-trimethoxybenzylidene)amino]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (Fun *et al.*, 2010) have been published which contain the 2,4,5-trimethoxyphenyl moiety.

In (I), the group A (C1—C6/O1/O2/O3) of 2,4,5-trimethoxyphenyl moiety, the central chain B (C10—C12/O4) and 2,5dimethylthiophen-3-yl C (C13—C18/S1) are planar with r. m. s. deviation of 0.0033, 0.0160 and 0.0031 Å, respectively. The dihedral angle between A/B, A/C and B/C is 1.80 (10), 10.65 (9) and 9.23 (12)°, respectively. Overall 2,4,5-trimethoxyphenyl group has a maximum deviation 0.0338 Å and in it the C9 deviates at maximum 0.0834 (20) Å. The molecules are interlinked through H-bondings of C—H···O type (Table 1, Fig. 2). There exist π — π interaction between the centroids of phenyl rings at a distance of 3.6832 (12) Å [symmetry: - *x*, - *y*, 1 - *z*].

Experimental

A solution of 3-acetyl-2,5-dimethythiophene (0.38 g, 0.0025 mol) and 2,4,5-trimethoxy benzaldehyde (0.49 g, 0.0025 mol) in ethanolic solution of NaOH (3.0 g in 10 ml of methanol) was stirred for 16 h at room temperature. The solution was poured into ice cold water of pH = 2 (pH adjusted by HCl). The solid was separated and dissolved in CH₂Cl₂, washed with saturated solution of NaHCO₃ and evaporated to dryness. The residual was recrystallized from methanol/chloroform to affoard yellow prisms.

Yield: 72%; m. p. 380-381 K.

IR (KBr) v_{max} cm⁻¹: 3016 (Ar—H), 2924 (C—H), 1642 (C=O), 1572(C=C). 1H NMR (DMSO-*d*₆) (δ /p.p.m.): 8.01 (s, 1H, CH_{aromatic}), 7.98 (s, CH_{aromatic}), 7.20 (d, C=CH, J=15.6 Hz), 7.08 (d, C=CH, J=15.0 Hz), 6.51 (s, 1H, C3, CH_{thiophene}), 3.94 (s, OCH₃), 3.73 (s, OCH₃), 3.62 (s, OCH₃), 2.44 (s, 3H, -CH₃), 2.17 (s, 3H, CH₃).

Refinement

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Figures

Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.

Fig. 2. The partial packing (*PLATON*; Spek, 2009) which shows that molecules are interlinked through H-bondings.

(E)-1-(2,5-Dimethyl-3-thienyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one

Crystal data

$C_{18}H_{20}O_4S$	$D_{\rm x} = 1.287 {\rm Mg m}^{-3}$
$M_r = 332.40$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Tetragonal, $I4_1/a$	Cell parameters from 2225 reflections
Hall symbol: -I 4ad	$\theta = 2.1 - 25.2^{\circ}$
a = 19.5263 (5) Å	$\mu = 0.21 \text{ mm}^{-1}$
c = 17.9952 (4) Å	<i>T</i> = 296 K
$V = 6861.2 (3) \text{ Å}^3$	Prism, yellow
Z = 16	$0.26 \times 0.18 \times 0.16 \text{ mm}$
F(000) = 2816	

Data collection

Bruker KAPPA APEXII CCD diffractometer	3106 independent reflections
Radiation source: fine-focus sealed tube	2225 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.038$
Detector resolution: 8.10 pixels mm ⁻¹	$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
ω scans	$h = -20 \rightarrow 23$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$k = -23 \rightarrow 23$
$T_{\min} = 0.966, \ T_{\max} = 0.975$	$l = -21 \rightarrow 21$
25995 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.113$	H-atom parameters constrained
<i>S</i> = 1.05	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0466P)^{2} + 4.0141P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3106 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
213 parameters	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.35094 (3)	0.20431 (3)	0.27680 (3)	0.0714 (2)
O1	0.12845 (9)	0.01126 (9)	0.64860 (7)	0.0807 (6)
02	-0.03254 (9)	-0.15317 (9)	0.54859 (9)	0.0813 (6)
O3	0.00824 (9)	-0.12701 (10)	0.41648 (8)	0.0862 (7)
O4	0.27754 (9)	0.14060 (9)	0.50556 (8)	0.0818 (6)
C1	0.12078 (10)	-0.00807 (10)	0.52048 (10)	0.0514 (7)
C2	0.09748 (11)	-0.02371 (11)	0.59198 (10)	0.0556 (7)
C3	0.04661 (11)	-0.07194 (11)	0.60327 (11)	0.0600(7)
C4	0.01787 (11)	-0.10560 (11)	0.54363 (12)	0.0600 (8)
C5	0.04047 (11)	-0.09097 (12)	0.47106 (11)	0.0604 (8)
C6	0.09028 (11)	-0.04341 (11)	0.46095 (11)	0.0569 (7)
C7	0.10721 (14)	-0.00049 (14)	0.72270 (11)	0.0754 (9)
C8	-0.05983 (14)	-0.16834 (16)	0.61946 (14)	0.0904 (11)
C9	0.03306 (14)	-0.12099 (15)	0.34337 (12)	0.0829 (10)
C10	0.17351 (10)	0.04257 (11)	0.51010 (10)	0.0553 (7)
C11	0.20201 (11)	0.06423 (11)	0.44711 (11)	0.0581 (7)
C12	0.25438 (11)	0.11732 (11)	0.44709 (11)	0.0579 (7)
C13	0.28009 (11)	0.14298 (11)	0.37456 (10)	0.0536 (7)
C14	0.25098 (12)	0.12648 (12)	0.30381 (11)	0.0622 (8)

C15	0.28342 (12)	0.15590 (12)	0.24581 (11)	0.0636 (8)
C16	0.26802 (14)	0.14998 (15)	0.16401 (12)	0.0857 (10)
C17	0.33529 (11)	0.18552 (11)	0.36833 (11)	0.0577 (7)
C18	0.38074 (14)	0.21495 (14)	0.42741 (13)	0.0810 (10)
H3	0.03178	-0.08165	0.65123	0.0720*
Н6	0.10480	-0.03382	0.41285	0.0683*
H7A	0.05890	0.00783	0.72682	0.1132*
H7B	0.13148	0.02983	0.75542	0.1132*
H7C	0.11684	-0.04708	0.73613	0.1132*
H8A	-0.02460	-0.18752	0.65031	0.1355*
H8B	-0.09654	-0.20070	0.61437	0.1355*
H8C	-0.07688	-0.12709	0.64183	0.1355*
H9A	0.02961	-0.07418	0.32751	0.1242*
H9B	0.00640	-0.14950	0.31093	0.1242*
H9C	0.08010	-0.13520	0.34178	0.1242*
H10	0.18992	0.06293	0.55329	0.0664*
H11	0.18819	0.04507	0.40224	0.0697*
H14	0.21311	0.09805	0.29830	0.0747*
H16A	0.30512	0.12692	0.13955	0.1286*
H16B	0.26257	0.19491	0.14319	0.1286*
H16C	0.22655	0.12433	0.15719	0.1286*
H18A	0.35531	0.24738	0.45650	0.1215*
H18B	0.41902	0.23751	0.40458	0.1215*
H18C	0.39698	0.17880	0.45898	0.1215*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0843 (4)	0.0798 (4)	0.0502 (3)	-0.0019 (3)	0.0108 (3)	0.0054 (3)
01	0.1053 (13)	0.0996 (12)	0.0372 (7)	-0.0388 (10)	-0.0040 (8)	-0.0007 (8)
O2	0.0825 (11)	0.0952 (12)	0.0662 (10)	-0.0260 (10)	0.0093 (8)	-0.0140 (9)
03	0.0853 (12)	0.1182 (14)	0.0552 (9)	-0.0282 (10)	0.0079 (8)	-0.0337 (9)
04	0.0953 (12)	0.1074 (13)	0.0426 (8)	-0.0294 (10)	-0.0032 (8)	-0.0034 (8)
C1	0.0545 (12)	0.0567 (12)	0.0430 (10)	0.0055 (10)	-0.0006 (8)	-0.0037 (9)
C2	0.0648 (13)	0.0599 (12)	0.0421 (10)	-0.0002 (11)	-0.0039 (9)	-0.0020 (9)
C3	0.0685 (14)	0.0697 (14)	0.0417 (10)	-0.0026 (12)	0.0018 (9)	0.0004 (10)
C4	0.0582 (13)	0.0642 (14)	0.0575 (12)	-0.0024 (11)	0.0040 (10)	-0.0072 (10)
C5	0.0594 (13)	0.0720 (14)	0.0497 (12)	0.0016 (12)	0.0015 (10)	-0.0171 (10)
C6	0.0582 (12)	0.0691 (14)	0.0434 (10)	0.0050 (11)	0.0060 (9)	-0.0084 (9)
C7	0.0982 (18)	0.0905 (17)	0.0376 (11)	-0.0146 (14)	-0.0026 (11)	0.0011 (10)
C8	0.093 (2)	0.104 (2)	0.0743 (16)	-0.0267 (17)	0.0136 (14)	0.0047 (14)
C9	0.0979 (19)	0.100 (2)	0.0507 (13)	-0.0002 (16)	-0.0021 (12)	-0.0240 (12)
C10	0.0624 (13)	0.0620 (13)	0.0416 (10)	0.0028 (10)	-0.0034 (9)	-0.0044 (9)
C11	0.0659 (13)	0.0673 (14)	0.0411 (10)	-0.0020 (11)	-0.0016 (9)	-0.0048 (9)
C12	0.0644 (13)	0.0685 (14)	0.0408 (10)	0.0026 (11)	-0.0012 (9)	-0.0016 (9)
C13	0.0584 (12)	0.0586 (12)	0.0439 (10)	0.0069 (10)	0.0009 (9)	0.0003 (9)
C14	0.0656 (14)	0.0786 (15)	0.0425 (11)	0.0027 (11)	-0.0005 (10)	-0.0003 (10)
C15	0.0700 (14)	0.0767 (15)	0.0440 (11)	0.0121 (12)	0.0002 (10)	-0.0011 (10)

C16	0.0957 (19)	0.120 (2)	0.0414 (12)	0.0123 (16)	-0.0012 (12)	0.0040 (12)
C17	0.0666 (14)	0.0611 (13)	0.0454 (11)	0.0065 (11)	0.0041 (9)	-0.0021 (9)
C18	0.0866 (18)	0.0967 (19)	0.0597 (14)	-0.0225 (15)	0.0038 (12)	-0.0086 (13)
Geometric parat	meters (Å, °)					
S1—C15		1.715 (2)	C15–	-C16	1.50	7 (3)
S1—C17		1.715 (2)	C17–	-C18	1.49	9 (3)
O1—C2		1.368 (2)	C3—]	Н3	0.93	00
O1—C7		1.415 (2)	C6—1	H6	0.93	00
O2—C4		1.356 (3)	C7—]	H7A	0.96	00
O2—C8		1.414 (3)	C7—]	H7B	0.96	00
O3—C5		1.362 (3)	C7—1	H7C	0.96	00
O3—C9		1.407 (3)	C8—1	H8A	0.96	00
04—C12		1.232 (3)	C8—1	H8B	0.96	00
CI = C2		1.399 (3)	C8—1	H&C	0.96	00
CI = C6		1.407(3)	C9—1	H9A	0.96	00
C1 = C10		1.440(3) 1.384(3)	C9—1		0.96	00
$C_2 = C_3$		1.334(3) 1.378(3)	C10_	_H10	0.90	00
C4—C5		1.578(3) 1 408(3)	C10	-H11	0.93	00
C5—C6		1.357 (3)	C14-	-H14	0.93	00
C10—C11		1.332 (3)	C16–	-H16A	0.96	00
C11—C12		1.456 (3)	C16–	-H16B	0.96	00
C12—C13		1.486 (3)	C16–	-H16C	0.96	00
C13—C14		1.431 (3)	C18–	-H18A	0.96	00
C13—C17		1.365 (3)	C18–	-H18B	0.96	00
C14—C15		1.349 (3)	C18–	-H18C	0.96	00
O2…O3		2.559 (2)	Н6…С	C9	2.53	00
O2····C9 ⁱ		3.410 (3)	Н6…С	C11	2.77	00
O3…O2		2.559 (2)	Н6…І	19A	2.27	00
O3····C9 ⁱ		3.209 (3)	Н6…І	19C	2.41	00
O4…C18		2.854 (3)	Н6…І	H11	2.25	00
O1…H10		2.3200	Н6…н	410 ^{viii}	2.59	00
O3····H9C ⁱ		2.5500	H7A·	··C3	2.73	00
04…H10		2.4400	H7A·	··H3	2.28	00
O4…H18A		2.7300	H7A.	H9A ^{iv}	2.37	00
O4…H18C		2.5900	H7B··	··C16 ^v	2.93	00
O4…H8C ⁱⁱ		2.7600	H7B…	·H16A ^v	2.47	00
O4…H9A ⁱⁱⁱ		2.8400	H7B…	··C1 ⁱⁱⁱ	2.91	00
O4…H14 ⁱⁱⁱ		2.5700	H7B…	·C6 ⁱⁱⁱ	3.04	00
C4···C6 ^{iv}		3.596 (3)	H7C··	··C3	2.80	00
C6…C4 ^{iv}		3.596 (3)	Н7С⋯	·H3	2.36	00
C7…C16 ^v		3.464 (3)	H7C…	··C15 ^{ix}	2.89	00
C9…O3 ^{vi}		3.209 (3)	H8A·	··C3	2.78	00
C9····O2 ^{vi}		3.410 (3)	H8A·	••Н3	2.34	00

C16····C7 ^{vii}	3.464 (3)	Н8С…С3	2.7300
C18…O4	2.854 (3)	Н8С…Н3	2.3100
C1···H7B ^{viii}	2.9100	H8C…O4 ^{xiii}	2.7600
C2…H16A ^{ix}	2.9000	Н9А…С6	2.7400
C3…H8C	2.7300	Н9А…Н6	2.2700
C3…H8A	2.7800	H9A…H7A ^{iv}	2.3700
СЗ…Н7А	2.7300	H9A…O4 ^{viii}	2.8400
C3…H7C	2.8000	Н9С…С6	2.8000
C6…H7B ^{viii}	3.0400	Н9С…Н6	2.4100
С6…Н9С	2.8000	H9C…O3 ^{vi}	2.5500
C6…H11	2.7800	H10…O1	2.3200
С6…Н9А	2.7400	H10…O4	2.4400
С7…Н3	2.5200	H10····H6 ⁱⁱⁱ	2.5900
С8…Н3	2.5300	H11…C6	2.7800
С9…Н6	2.5300	H11…C14	2.6800
С11…Н6	2.7700	H11…H6	2.2500
C11…H14	2.7700	H11…H14	2.1900
C12···H14 ⁱⁱⁱ	3.0200	H14…C11	2.7700
C12…H18C	3.0400	H14…H11	2.1900
C12···H16C ⁱⁱⁱ	3.0600	H14····O4 ^{viii}	2.5700
C13···H16C ⁱⁱⁱ	3.0300	H14····C12 ^{viii}	3.0200
C14…H11	2.6800	H16A···C2 ^x	2.9000
C15····H7C ^x	2.8900	H16A…H7B ^{vii}	2.4700
C16…H7B ^{vii}	2.9300	H16B····C17 ^{xi}	3.0200
C17…H16B ^{xi}	3.0200	H16C…C12 ^{viii}	3.0600
C18…H18B ^{xii}	3.1000	H16C····C13 ^{viii}	3.0300
Н3…С7	2.5200	H18A…O4	2.7300
H3…C8	2.5300	H18B…C18 ^{xiv}	3.1000
Н3…Н7А	2.2800	H18B…H18B ^{xiv}	2.5000
НЗ…Н7С	2.3600	H18B…H18B ^{xii}	2.5000
НЗ…Н8А	2.3400	H18C…O4	2.5900
НЗ…Н8С	2.3100	H18C…C12	3.0400
C15—S1—C17	93.29 (10)	O1—C7—H7A	109.00
C2—O1—C7	119.44 (18)	O1—C7—H7B	109.00
C4—O2—C8	118.45 (19)	O1—C7—H7C	109.00
С5—О3—С9	118.16 (19)	H7A—C7—H7B	109.00
C2—C1—C6	117.12 (18)	Н7А—С7—Н7С	109.00
C2—C1—C10	120.13 (17)	H7B—C7—H7C	109.00
C6—C1—C10	122.75 (17)	O2—C8—H8A	109.00
O1—C2—C1	115.63 (18)	O2—C8—H8B	109.00
O1—C2—C3	123.22 (17)	O2—C8—H8C	109.00
C1—C2—C3	121.15 (18)	H8A—C8—H8B	109.00
C2—C3—C4	120.17 (19)	Н8А—С8—Н8С	109.00
O2—C4—C3	124.82 (19)	H8B—C8—H8C	109.00
O2—C4—C5	115.31 (19)	O3—C9—H9A	109.00

C3—C4—C5	119.9 (2)	O3—C9—H9B	109.00
O3—C5—C4	114.78 (19)	О3—С9—Н9С	109.00
O3—C5—C6	126.01 (19)	Н9А—С9—Н9В	109.00
C4—C5—C6	119.20 (19)	Н9А—С9—Н9С	109.00
C1—C6—C5	122.49 (18)	Н9В—С9—Н9С	109.00
C1-C10-C11	128.86 (18)	C1—C10—H10	116.00
C10-C11-C12	121.32 (19)	C11—C10—H10	116.00
O4—C12—C11	121.34 (19)	C10-C11-H11	119.00
O4—C12—C13	120.12 (19)	C12—C11—H11	119.00
C11—C12—C13	118.53 (18)	C13—C14—H14	123.00
C12—C13—C14	124.86 (19)	C15-C14-H14	123.00
C12—C13—C17	122.97 (18)	C15—C16—H16A	109.00
C14—C13—C17	112.18 (18)	C15—C16—H16B	109.00
C13—C14—C15	114.0 (2)	C15—C16—H16C	109.00
S1—C15—C14	110.12 (16)	H16A—C16—H16B	109.00
S1-C15-C16	120.88 (17)	H16A—C16—H16C	109.00
C14—C15—C16	129.0 (2)	H16B—C16—H16C	109.00
S1-C17-C13	110.47 (15)	C17—C18—H18A	109.00
S1-C17-C18	119.58 (17)	C17—C18—H18B	109.00
C13—C17—C18	129.96 (19)	C17—C18—H18C	109.00
С2—С3—Н3	120.00	H18A—C18—H18B	109.00
С4—С3—Н3	120.00	H18A—C18—H18C	109.00
С1—С6—Н6	119.00	H18B—C18—H18C	109.00
С5—С6—Н6	119.00		
C5—C6—H6 C17—S1—C15—C14	119.00 -0.40 (19)	02—C4—C5—O3	-0.1 (3)
C5—C6—H6 C17—S1—C15—C14 C17—S1—C15—C16	119.00 -0.40 (19) -179.6 (2)	O2—C4—C5—O3 O2—C4—C5—C6	-0.1 (3) 179.3 (2)
C5—C6—H6 C17—S1—C15—C14 C17—S1—C15—C16 C15—S1—C17—C13	119.00 -0.40 (19) -179.6 (2) 0.38 (18)	02—C4—C5—O3 02—C4—C5—C6 C3—C4—C5—O3	-0.1 (3) 179.3 (2) -179.7 (2)
C5—C6—H6 C17—S1—C15—C14 C17—S1—C15—C16 C15—S1—C17—C13 C15—S1—C17—C18	119.00 -0.40 (19) -179.6 (2) 0.38 (18) 179.9 (2)	O2-C4-C5-O3 O2-C4-C5-C6 C3-C4-C5-O3 C3-C4-C5-C6	-0.1 (3) 179.3 (2) -179.7 (2) -0.3 (3)
C5—C6—H6 C17—S1—C15—C14 C17—S1—C15—C16 C15—S1—C17—C13 C15—S1—C17—C18 C7—O1—C2—C1	119.00 -0.40 (19) -179.6 (2) 0.38 (18) 179.9 (2) 178.9 (2)	O2-C4-C5-O3 O2-C4-C5-C6 C3-C4-C5-O3 C3-C4-C5-C6 O3-C5-C6-C1	-0.1 (3) 179.3 (2) -179.7 (2) -0.3 (3) 179.6 (2)
C5—C6—H6 C17—S1—C15—C14 C17—S1—C15—C16 C15—S1—C17—C13 C15—S1—C17—C18 C7—O1—C2—C1 C7—O1—C2—C3	119.00 -0.40 (19) -179.6 (2) 0.38 (18) 179.9 (2) 178.9 (2) -1.5 (3)	O2—C4—C5—O3 O2—C4—C5—C6 C3—C4—C5—O3 C3—C4—C5—C6 O3—C5—C6—C1 C4—C5—C6—C1	-0.1 (3) 179.3 (2) -179.7 (2) -0.3 (3) 179.6 (2) 0.3 (3)
C5—C6—H6 C17—S1—C15—C14 C17—S1—C15—C16 C15—S1—C17—C13 C15—S1—C17—C18 C7—O1—C2—C1 C7—O1—C2—C3 C8—O2—C4—C3	119.00 -0.40 (19) -179.6 (2) 0.38 (18) 179.9 (2) 178.9 (2) -1.5 (3) 2.2 (3)	$\begin{array}{c} 02 - C4 - C5 - 03 \\ 02 - C4 - C5 - C6 \\ C3 - C4 - C5 - C6 \\ 03 - C4 - C5 - C6 \\ 03 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C1 - C10 - C11 - C12 \end{array}$	-0.1 (3) 179.3 (2) -179.7 (2) -0.3 (3) 179.6 (2) 0.3 (3) 178.9 (2)
C5—C6—H6 C17—S1—C15—C14 C17—S1—C15—C16 C15—S1—C17—C13 C15—S1—C17—C18 C7—O1—C2—C1 C7—O1—C2—C3 C8—O2—C4—C3 C8—O2—C4—C5	119.00 -0.40 (19) -179.6 (2) 0.38 (18) 179.9 (2) 178.9 (2) -1.5 (3) 2.2 (3) -177.3 (2)	O2-C4-C5-O3 O2-C4-C5-C6 C3-C4-C5-O3 C3-C4-C5-C6 O3-C5-C6-C1 C4-C5-C6-C1 C1-C10-C11-C12 C10-C11-C12-O4	-0.1 (3) 179.3 (2) -179.7 (2) -0.3 (3) 179.6 (2) 0.3 (3) 178.9 (2) 5.2 (3)
C5—C6—H6 C17—S1—C15—C14 C17—S1—C15—C16 C15—S1—C17—C13 C15—S1—C17—C18 C7—O1—C2—C1 C7—O1—C2—C3 C8—O2—C4—C3 C8—O2—C4—C5 C9—O3—C5—C4	119.00 -0.40 (19) -179.6 (2) 0.38 (18) 179.9 (2) 178.9 (2) -1.5 (3) 2.2 (3) -177.3 (2) -173.0 (2)	O2-C4-C5-O3 O2-C4-C5-C6 C3-C4-C5-O3 C3-C4-C5-C6 O3-C5-C6-C1 C4-C5-C6-C1 C1-C10-C11-C12 C10-C11-C12-O4 C10-C11-C12-C13	-0.1 (3) 179.3 (2) -179.7 (2) -0.3 (3) 179.6 (2) 0.3 (3) 178.9 (2) 5.2 (3) -175.2 (2)
C5-C6-H6 $C17-S1-C15-C14$ $C17-S1-C15-C16$ $C15-S1-C17-C13$ $C15-S1-C17-C18$ $C7-O1-C2-C1$ $C7-O1-C2-C3$ $C8-O2-C4-C3$ $C8-O2-C4-C5$ $C9-O3-C5-C4$ $C9-O3-C5-C6$	119.00 -0.40 (19) -179.6 (2) 0.38 (18) 179.9 (2) 178.9 (2) -1.5 (3) 2.2 (3) -177.3 (2) -173.0 (2) 7.6 (3)	$\begin{array}{c} 02 - C4 - C5 - 03 \\ 02 - C4 - C5 - C6 \\ C3 - C4 - C5 - C6 \\ 03 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C1 - C10 - C11 - C12 \\ C10 - C11 - C12 - O4 \\ C10 - C11 - C12 - C13 \\ O4 - C12 - C13 - C14 \end{array}$	-0.1 (3) 179.3 (2) -179.7 (2) -0.3 (3) 179.6 (2) 0.3 (3) 178.9 (2) 5.2 (3) -175.2 (2) -171.4 (2)
C5-C6-H6 $C17-S1-C15-C14$ $C17-S1-C15-C16$ $C15-S1-C17-C13$ $C15-S1-C17-C18$ $C7-01-C2-C1$ $C7-01-C2-C3$ $C8-02-C4-C3$ $C8-02-C4-C5$ $C9-03-C5-C4$ $C9-03-C5-C6$ $C6-C1-C2-O1$	119.00 -0.40 (19) -179.6 (2) 0.38 (18) 179.9 (2) 178.9 (2) -1.5 (3) 2.2 (3) -177.3 (2) -173.0 (2) 7.6 (3) 179.65 (19)	$\begin{array}{c} 02 - C4 - C5 - 03 \\ 02 - C4 - C5 - C6 \\ C3 - C4 - C5 - 03 \\ C3 - C4 - C5 - C6 \\ 03 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C1 - C10 - C11 - C12 \\ C10 - C11 - C12 - O4 \\ C10 - C11 - C12 - C13 \\ O4 - C12 - C13 - C14 \\ O4 - C12 - C13 - C17 \end{array}$	-0.1 (3) 179.3 (2) -179.7 (2) -0.3 (3) 179.6 (2) 0.3 (3) 178.9 (2) 5.2 (3) -175.2 (2) -171.4 (2) 8.8 (3)
C5-C6-H6 $C17-S1-C15-C14$ $C17-S1-C15-C16$ $C15-S1-C17-C13$ $C15-S1-C17-C18$ $C7-01-C2-C1$ $C7-01-C2-C3$ $C8-02-C4-C3$ $C8-02-C4-C5$ $C9-03-C5-C4$ $C9-03-C5-C6$ $C6-C1-C2-01$ $C6-C1-C2-C3$	119.00 -0.40 (19) -179.6 (2) 0.38 (18) 179.9 (2) 178.9 (2) -1.5 (3) 2.2 (3) -177.3 (2) -173.0 (2) 7.6 (3) 179.65 (19) 0.0 (3)	$\begin{array}{c} 02 - C4 - C5 - 03 \\ 02 - C4 - C5 - C6 \\ C3 - C4 - C5 - C6 \\ 03 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C1 - C10 - C11 - C12 \\ C10 - C11 - C12 - O4 \\ C10 - C11 - C12 - C13 \\ O4 - C12 - C13 - C14 \\ O4 - C12 - C13 - C17 \\ C11 - C12 - C13 - C14 \end{array}$	$\begin{array}{c} -0.1 (3) \\ 179.3 (2) \\ -179.7 (2) \\ -0.3 (3) \\ 179.6 (2) \\ 0.3 (3) \\ 178.9 (2) \\ 5.2 (3) \\ -175.2 (2) \\ -171.4 (2) \\ 8.8 (3) \\ 9.0 (3) \end{array}$
C5-C6-H6 $C17-S1-C15-C14$ $C17-S1-C15-C16$ $C15-S1-C17-C13$ $C15-S1-C17-C18$ $C7-01-C2-C1$ $C7-01-C2-C3$ $C8-02-C4-C3$ $C8-02-C4-C5$ $C9-03-C5-C4$ $C9-03-C5-C6$ $C6-C1-C2-O1$ $C6-C1-C2-O1$ $C6-C1-C2-O1$	119.00 -0.40 (19) -179.6 (2) 0.38 (18) 179.9 (2) 178.9 (2) -1.5 (3) 2.2 (3) -177.3 (2) -173.0 (2) 7.6 (3) 179.65 (19) 0.0 (3) -0.7 (3)	$\begin{array}{c} 02 - C4 - C5 - 03 \\ 02 - C4 - C5 - C6 \\ C3 - C4 - C5 - C6 \\ 03 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C1 - C10 - C11 - C12 \\ C10 - C11 - C12 - O4 \\ C10 - C11 - C12 - C13 \\ O4 - C12 - C13 - C14 \\ O4 - C12 - C13 - C14 \\ C11 - C12 - C13 - C14 \\ C11 - C12 - C13 - C17 \\ C11 - C12 - C13 - C17 \\ \end{array}$	-0.1 (3) 179.3 (2) -179.7 (2) -0.3 (3) 179.6 (2) 0.3 (3) 178.9 (2) 5.2 (3) -175.2 (2) -171.4 (2) 8.8 (3) 9.0 (3) -170.8 (2)
C5-C6-H6 $C17-S1-C15-C14$ $C17-S1-C15-C16$ $C15-S1-C17-C13$ $C15-S1-C17-C18$ $C7-01-C2-C1$ $C7-01-C2-C3$ $C8-02-C4-C3$ $C8-02-C4-C5$ $C9-03-C5-C4$ $C9-03-C5-C4$ $C9-03-C5-C6$ $C6-C1-C2-01$ $C6-C1-C2-C3$ $C10-C1-C2-C3$	119.00 $-0.40 (19)$ $-179.6 (2)$ $0.38 (18)$ $179.9 (2)$ $178.9 (2)$ $-1.5 (3)$ $2.2 (3)$ $-177.3 (2)$ $-173.0 (2)$ $7.6 (3)$ $179.65 (19)$ $0.0 (3)$ $-0.7 (3)$ $179.7 (2)$	$\begin{array}{c} 02 - C4 - C5 - 03 \\ 02 - C4 - C5 - C6 \\ C3 - C4 - C5 - C6 \\ 03 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C1 - C10 - C11 - C12 \\ C10 - C11 - C12 - O4 \\ C10 - C11 - C12 - C13 \\ O4 - C12 - C13 - C14 \\ O4 - C12 - C13 - C14 \\ C11 - C12 - C13 - C14 \\ C11 - C12 - C13 - C17 \\ C11 - C12 - C13 - C17 \\ C12 - C13 - C14 - C15 \\ \end{array}$	-0.1 (3) 179.3 (2) -179.7 (2) -0.3 (3) 179.6 (2) 0.3 (3) 178.9 (2) 5.2 (3) -175.2 (2) -171.4 (2) 8.8 (3) 9.0 (3) -170.8 (2) -179.9 (2)
C5-C6-H6 $C17-S1-C15-C14$ $C17-S1-C15-C16$ $C15-S1-C17-C13$ $C15-S1-C17-C18$ $C7-01-C2-C1$ $C7-01-C2-C3$ $C8-02-C4-C3$ $C8-02-C4-C5$ $C9-03-C5-C4$ $C9-03-C5-C6$ $C6-C1-C2-O1$ $C6-C1-C2-O1$ $C10-C1-C2-C3$ $C10-C1-C2-C3$ $C2-C1-C6-C5$	119.00 $-0.40 (19)$ $-179.6 (2)$ $0.38 (18)$ $179.9 (2)$ $-1.5 (3)$ $2.2 (3)$ $-177.3 (2)$ $-173.0 (2)$ $7.6 (3)$ $179.65 (19)$ $0.0 (3)$ $-0.7 (3)$ $179.7 (2)$ $-0.2 (3)$	$\begin{array}{c} 02 - C4 - C5 - 03 \\ 02 - C4 - C5 - C6 \\ C3 - C4 - C5 - C6 \\ 03 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C1 - C10 - C11 - C12 \\ C10 - C11 - C12 - O4 \\ C10 - C11 - C12 - C13 \\ O4 - C12 - C13 - C14 \\ O4 - C12 - C13 - C17 \\ C11 - C12 - C13 - C14 \\ C11 - C12 - C13 - C17 \\ C12 - C13 - C14 - C15 \\ C17 - C13 - C14 - C15 \\ C17 - C13 - C14 - C15 \\ \end{array}$	$\begin{array}{c} -0.1 (3) \\ 179.3 (2) \\ -179.7 (2) \\ -0.3 (3) \\ 179.6 (2) \\ 0.3 (3) \\ 178.9 (2) \\ 5.2 (3) \\ -175.2 (2) \\ -171.4 (2) \\ 8.8 (3) \\ 9.0 (3) \\ -170.8 (2) \\ -179.9 (2) \\ 0.0 (3) \end{array}$
C5-C6-H6 $C17-S1-C15-C14$ $C17-S1-C15-C16$ $C15-S1-C17-C13$ $C15-S1-C17-C18$ $C7-01-C2-C1$ $C7-01-C2-C3$ $C8-02-C4-C3$ $C8-02-C4-C5$ $C9-03-C5-C4$ $C9-03-C5-C4$ $C9-03-C5-C6$ $C6-C1-C2-O1$ $C6-C1-C2-C3$ $C10-C1-C2-C3$ $C10-C1-C2-C3$ $C2-C1-C6-C5$ $C10-C1-C6-C5$	$\begin{array}{c} 119.00 \\ -0.40 \ (19) \\ -179.6 \ (2) \\ 0.38 \ (18) \\ 179.9 \ (2) \\ 178.9 \ (2) \\ -1.5 \ (3) \\ 2.2 \ (3) \\ -177.3 \ (2) \\ -173.0 \ (2) \\ 7.6 \ (3) \\ 179.65 \ (19) \\ 0.0 \ (3) \\ -0.7 \ (3) \\ 179.7 \ (2) \\ -0.2 \ (3) \\ -179.8 \ (2) \end{array}$	$\begin{array}{c} 02 - C4 - C5 - 03 \\ 02 - C4 - C5 - C6 \\ C3 - C4 - C5 - C6 \\ 03 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C1 - C10 - C11 - C12 \\ C10 - C11 - C12 - O4 \\ C10 - C11 - C12 - O4 \\ C10 - C11 - C12 - C13 \\ O4 - C12 - C13 - C14 \\ O4 - C12 - C13 - C14 \\ C11 - C12 - C13 - C14 \\ C11 - C12 - C13 - C17 \\ C12 - C13 - C14 - C15 \\ C17 - C13 - C14 - C15 \\ C12 - C13 - C17 - S1 \end{array}$	$\begin{array}{c} -0.1 (3) \\ 179.3 (2) \\ -179.7 (2) \\ -0.3 (3) \\ 179.6 (2) \\ 0.3 (3) \\ 178.9 (2) \\ 5.2 (3) \\ -175.2 (2) \\ -171.4 (2) \\ 8.8 (3) \\ 9.0 (3) \\ -170.8 (2) \\ -179.9 (2) \\ 0.0 (3) \\ 179.55 (17) \end{array}$
C5-C6-H6 $C17-S1-C15-C14$ $C17-S1-C15-C16$ $C15-S1-C17-C13$ $C15-S1-C17-C18$ $C7-01-C2-C1$ $C7-01-C2-C3$ $C8-02-C4-C3$ $C8-02-C4-C5$ $C9-03-C5-C4$ $C9-03-C5-C4$ $C9-03-C5-C6$ $C6-C1-C2-O1$ $C6-C1-C2-O1$ $C10-C1-C2-C3$ $C10-C1-C2-C3$ $C2-C1-C6-C5$ $C10-C1-C6-C5$ $C2-C1-C10-C11$	$\begin{array}{c} 119.00 \\ -0.40 \ (19) \\ -179.6 \ (2) \\ 0.38 \ (18) \\ 179.9 \ (2) \\ 178.9 \ (2) \\ -1.5 \ (3) \\ 2.2 \ (3) \\ -177.3 \ (2) \\ -173.0 \ (2) \\ 7.6 \ (3) \\ 179.65 \ (19) \\ 0.0 \ (3) \\ -0.7 \ (3) \\ 179.7 \ (2) \\ -0.2 \ (3) \\ -179.8 \ (2) \\ -180.0 \ (2) \end{array}$	$\begin{array}{c} 02 - C4 - C5 - 03 \\ 02 - C4 - C5 - C6 \\ C3 - C4 - C5 - 03 \\ C3 - C4 - C5 - C6 \\ 03 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C1 - C10 - C11 - C12 \\ C10 - C11 - C12 - O4 \\ C10 - C11 - C12 - O4 \\ C10 - C11 - C12 - C13 \\ O4 - C12 - C13 - C14 \\ O4 - C12 - C13 - C17 \\ C11 - C12 - C13 - C17 \\ C11 - C12 - C13 - C17 \\ C12 - C13 - C14 - C15 \\ C17 - C13 - C14 - C15 \\ C12 - C13 - C17 - S1 \\ C12 - C13 - C17 - C18 \\ \end{array}$	$\begin{array}{c} -0.1 (3) \\ 179.3 (2) \\ -179.7 (2) \\ -0.3 (3) \\ 179.6 (2) \\ 0.3 (3) \\ 178.9 (2) \\ 5.2 (3) \\ -175.2 (2) \\ -171.4 (2) \\ 8.8 (3) \\ 9.0 (3) \\ -170.8 (2) \\ -179.9 (2) \\ 0.0 (3) \\ 179.55 (17) \\ 0.2 (4) \end{array}$
C5-C6-H6 $C17-S1-C15-C14$ $C17-S1-C15-C16$ $C15-S1-C17-C13$ $C15-S1-C17-C18$ $C7-01-C2-C1$ $C7-01-C2-C3$ $C8-02-C4-C3$ $C8-02-C4-C5$ $C9-03-C5-C4$ $C9-03-C5-C6$ $C6-C1-C2-O1$ $C6-C1-C2-O1$ $C10-C1-C2-C3$ $C10-C1-C2-C3$ $C10-C1-C2-C3$ $C2-C1-C6-C5$ $C10-C1-C6-C5$ $C2-C1-C10-C11$ $C6-C1-C10-C11$	$\begin{array}{c} 119.00 \\ -0.40 \ (19) \\ -179.6 \ (2) \\ 0.38 \ (18) \\ 179.9 \ (2) \\ 178.9 \ (2) \\ -1.5 \ (3) \\ 2.2 \ (3) \\ -177.3 \ (2) \\ -173.0 \ (2) \\ 7.6 \ (3) \\ 179.65 \ (19) \\ 0.0 \ (3) \\ -0.7 \ (3) \\ 179.7 \ (2) \\ -0.2 \ (3) \\ -179.8 \ (2) \\ -180.0 \ (2) \\ -0.3 \ (3) \end{array}$	$\begin{array}{c} 02 - C4 - C5 - 03 \\ 02 - C4 - C5 - C6 \\ C3 - C4 - C5 - C6 \\ 03 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C1 - C10 - C11 - C12 \\ C10 - C11 - C12 - O4 \\ C10 - C11 - C12 - C13 \\ 04 - C12 - C13 - C14 \\ 04 - C12 - C13 - C14 \\ C11 - C12 - C13 - C17 \\ C11 - C12 - C13 - C17 \\ C12 - C13 - C14 - C15 \\ C17 - C13 - C14 - C15 \\ C12 - C13 - C17 - S1 \\ C12 - C13 - C17 - S1 \\ C14 - C13 - C17 - S1 \\ \end{array}$	$\begin{array}{c} -0.1 (3) \\ 179.3 (2) \\ -179.7 (2) \\ -0.3 (3) \\ 179.6 (2) \\ 0.3 (3) \\ 178.9 (2) \\ 5.2 (3) \\ -175.2 (2) \\ -171.4 (2) \\ 8.8 (3) \\ 9.0 (3) \\ -170.8 (2) \\ -179.9 (2) \\ 0.0 (3) \\ 179.55 (17) \\ 0.2 (4) \\ -0.3 (2) \end{array}$
C5-C6-H6 $C17-S1-C15-C14$ $C17-S1-C15-C16$ $C15-S1-C17-C13$ $C15-S1-C17-C18$ $C7-01-C2-C1$ $C7-01-C2-C3$ $C8-02-C4-C3$ $C8-02-C4-C5$ $C9-03-C5-C4$ $C9-03-C5-C6$ $C6-C1-C2-O1$ $C6-C1-C2-O1$ $C10-C1-C2-C3$ $C10-C1-C2-C3$ $C2-C1-C6-C5$ $C10-C1-C6-C5$ $C2-C1-C10-C11$ $C6-C1-C10-C11$ $O1-C2-C3-C4$	$\begin{array}{c} 119.00 \\ -0.40 \ (19) \\ -179.6 \ (2) \\ 0.38 \ (18) \\ 179.9 \ (2) \\ 178.9 \ (2) \\ -1.5 \ (3) \\ 2.2 \ (3) \\ -177.3 \ (2) \\ -173.0 \ (2) \\ 7.6 \ (3) \\ 179.65 \ (19) \\ 0.0 \ (3) \\ -0.7 \ (3) \\ 179.7 \ (2) \\ -0.2 \ (3) \\ -179.8 \ (2) \\ -180.0 \ (2) \\ -0.3 \ (3) \\ -179.6 \ (2) \end{array}$	$\begin{array}{c} 02 - C4 - C5 - 03 \\ 02 - C4 - C5 - C6 \\ C3 - C4 - C5 - C6 \\ 03 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C1 - C10 - C11 - C12 \\ C10 - C11 - C12 - O4 \\ C10 - C11 - C12 - C13 \\ 04 - C12 - C13 - C14 \\ 04 - C12 - C13 - C17 \\ C11 - C12 - C13 - C17 \\ C11 - C12 - C13 - C17 \\ C12 - C13 - C14 - C15 \\ C17 - C13 - C14 - C15 \\ C12 - C13 - C17 - S1 \\ C12 - C13 - C17 - S1 \\ C14 - C13 - C17 - C18 \\ \end{array}$	$\begin{array}{c} -0.1 (3) \\ 179.3 (2) \\ -179.7 (2) \\ -0.3 (3) \\ 179.6 (2) \\ 0.3 (3) \\ 178.9 (2) \\ 5.2 (3) \\ -175.2 (2) \\ -171.4 (2) \\ 8.8 (3) \\ 9.0 (3) \\ -179.8 (2) \\ -179.9 (2) \\ 0.0 (3) \\ 179.55 (17) \\ 0.2 (4) \\ -0.3 (2) \\ -179.7 (2) \end{array}$
C5-C6-H6 $C17-S1-C15-C14$ $C17-S1-C15-C16$ $C15-S1-C17-C13$ $C15-S1-C17-C18$ $C7-01-C2-C1$ $C7-01-C2-C3$ $C8-02-C4-C3$ $C8-02-C4-C5$ $C9-03-C5-C4$ $C9-03-C5-C4$ $C9-03-C5-C6$ $C6-C1-C2-O1$ $C6-C1-C2-O1$ $C10-C1-C2-C3$ $C2-C1-C6-C5$ $C10-C1-C6-C5$ $C2-C1-C10-C11$ $C6-C1-C10-C11$ $C6-C1-C10-C11$ $C1-C2-C3-C4$	$\begin{array}{c} 119.00 \\ -0.40 \ (19) \\ -179.6 \ (2) \\ 0.38 \ (18) \\ 179.9 \ (2) \\ 178.9 \ (2) \\ -1.5 \ (3) \\ 2.2 \ (3) \\ -177.3 \ (2) \\ -173.0 \ (2) \\ 7.6 \ (3) \\ 179.65 \ (19) \\ 0.0 \ (3) \\ -0.7 \ (3) \\ 179.7 \ (2) \\ -0.2 \ (3) \\ -179.8 \ (2) \\ -180.0 \ (2) \\ -0.3 \ (3) \\ -179.6 \ (2) \\ 0.0 \ (3) \end{array}$	$\begin{array}{c} 02 - C4 - C5 - 03 \\ 02 - C4 - C5 - C6 \\ C3 - C4 - C5 - C6 \\ 03 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C1 - C10 - C11 - C12 \\ C10 - C11 - C12 - O4 \\ C10 - C11 - C12 - C13 \\ 04 - C12 - C13 - C14 \\ 04 - C12 - C13 - C14 \\ 04 - C12 - C13 - C14 \\ C11 - C12 - C13 - C14 \\ C11 - C12 - C13 - C17 \\ C12 - C13 - C14 - C15 \\ C17 - C13 - C14 - C15 \\ C17 - C13 - C17 - S1 \\ C12 - C13 - C17 - S1 \\ C14 - C13 - C17 - C18 \\ C14 - C13 - C17 - C18 \\ C13 - C14 - C15 - S1 \\ \end{array}$	$\begin{array}{c} -0.1 (3) \\ 179.3 (2) \\ -179.7 (2) \\ -0.3 (3) \\ 179.6 (2) \\ 0.3 (3) \\ 178.9 (2) \\ 5.2 (3) \\ -175.2 (2) \\ -171.4 (2) \\ 8.8 (3) \\ 9.0 (3) \\ -170.8 (2) \\ -179.9 (2) \\ 0.0 (3) \\ 179.55 (17) \\ 0.2 (4) \\ -0.3 (2) \\ -179.7 (2) \\ 0.3 (3) \end{array}$
C5-C6-H6 $C17-S1-C15-C14$ $C17-S1-C15-C16$ $C15-S1-C17-C13$ $C15-S1-C17-C18$ $C7-01-C2-C1$ $C7-01-C2-C3$ $C8-02-C4-C5$ $C9-03-C5-C4$ $C9-03-C5-C4$ $C9-03-C5-C6$ $C6-C1-C2-O1$ $C6-C1-C2-O1$ $C10-C1-C2-C3$ $C2-C1-C6-C5$ $C10-C1-C6-C5$ $C2-C1-C10-C11$ $C6-C1-C10-C11$ $C6-C1-C10-C11$ $O1-C2-C3-C4$ $C1-C2-C3-C4$ $C1-C2-C3-C4$ $C1-C2-C3-C4$ $C1-C2-C3-C4$ $C2-C3-C4$	$\begin{array}{c} 119.00 \\ -0.40 \ (19) \\ -179.6 \ (2) \\ 0.38 \ (18) \\ 179.9 \ (2) \\ 178.9 \ (2) \\ -1.5 \ (3) \\ 2.2 \ (3) \\ -177.3 \ (2) \\ -173.0 \ (2) \\ 7.6 \ (3) \\ 179.65 \ (19) \\ 0.0 \ (3) \\ -0.7 \ (3) \\ 179.7 \ (2) \\ -0.2 \ (3) \\ -179.8 \ (2) \\ -180.0 \ (2) \\ -0.3 \ (3) \\ -179.6 \ (2) \\ 0.0 \ (3) \\ -179.4 \ (2) \end{array}$	$\begin{array}{c} 02 - C4 - C5 - 03 \\ 02 - C4 - C5 - C6 \\ C3 - C4 - C5 - C6 \\ 03 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C4 - C5 - C6 - C1 \\ C1 - C10 - C11 - C12 \\ C10 - C11 - C12 - O4 \\ C10 - C11 - C12 - O4 \\ C10 - C11 - C12 - C13 \\ O4 - C12 - C13 - C14 \\ O4 - C12 - C13 - C17 \\ C11 - C12 - C13 - C17 \\ C11 - C12 - C13 - C17 \\ C12 - C13 - C14 - C15 \\ C17 - C13 - C14 - C15 \\ C12 - C13 - C17 - S1 \\ C14 - C13 - C17 - S1 \\ C14 - C13 - C17 - C18 \\ C13 - C14 - C15 - S1 \\ C13 - C14 - C15 - S1 \\ C13 - C14 - C15 - C16 \\ \end{array}$	$\begin{array}{c} -0.1 (3) \\ 179.3 (2) \\ -179.7 (2) \\ -0.3 (3) \\ 179.6 (2) \\ 0.3 (3) \\ 178.9 (2) \\ 5.2 (3) \\ -175.2 (2) \\ -171.4 (2) \\ 8.8 (3) \\ 9.0 (3) \\ -170.8 (2) \\ -179.9 (2) \\ 0.0 (3) \\ 179.55 (17) \\ 0.2 (4) \\ -0.3 (2) \\ -179.7 (2) \\ 0.3 (3) \\ 179.4 (2) \end{array}$

Symmetry codes: (i) -y-1/4, x-1/4, -z+3/4; (ii) -y+1/4, x+1/4, -z+5/4; (iii) y+1/4, -x+1/4, z+1/4; (iv) -x, -y, -z+1; (v) -y+1/4, x-1/4, z+3/4; (vi) y+1/4, -x-1/4, -z+3/4; (vii) -y+1/4, x-1/4, z-1/4; (ix) -x+1/2, -y, z+1/2; (x) -x+1/2, -y, z-1/2; (xi) -x+1/2, -y+1/2, -z+1/2; (xi) -y+3/4, x-1/4, -z+3/4; (xiii) y-1/4, -x+1/4, -z+5/4; (xiv) y+1/4, -x+3/4, -z+3/4.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C9—H9C···O3 ^{vi}	0.96	2.55	3.209 (3)	126
C14—H14····O4 ^{viii}	0.93	2.57	3.483 (3)	168
Symmetry codes: (vi) $y+1/4$, $-x-1/4$, $-z+3/4$; (viii) $-z$	y+1/4, $x-1/4$, $z-1/4$.			

Fig. 1

